DS3500 – Product Hardware Overview

- Single or Dual-active, intelligent 6Gb/s x4 SAS controller architecture
- Two 6Gb/s x4 SAS host connectors per controller (standard)
- Optional host interface card adds additional connectivity
 - SAS HIC: Two 6 Gb/s x4 SAS connectors per controller
 - FC HIC: Four 8 Gb/s FC ports per controller
 - 1Gb/s iSCSI HIC: Four 1Gb/s iSCSI ports per controller
 - 10Gb/s iSCSI HIC: Two 10Gb/s iSCSI ports per controller
- Two 6 Gb/s x4 SAS drive-side connectors for capacity expansion
- Support for up to 192 drives per system
 - Intermix EXP3524 (2U/24) and EXP3512 (2U/12) expansion units
- 1GB (standard) or 2GB (optional) cache per controller
DS3500 Express Storage System

Two starting points to best meet storage infrastructure requirements

DS3524
Best suited for highest performance (SSD) and performance value (10K)

- (24) 2.5" SAS drives
- SSD, 15K, 10K, NL, SED

DS3512
Intermix high performance (15K) and highest capacity (3TB) drives

- (12) 3.5" SAS drives
- 15K, NL, SED
DS3500 Dual Controller Back View

Native SAS host ports only

1 Controllers
2 Power / cooling
DS3500 Controller – Back Panel w/ no Host Card

- (2) 6Gb/s x4 SAS host interface connector
- 6Gb/s SAS x4 drive expansion connector
- Serial
- Dual Ethernet connections
- Optional host interface card
Optional Host Interface Card

SAS Host card
• (2) 6Gb/s x4 SAS connectors

FC Host card
• (4) 8Gb/s FC ports

iSCSI Host Card
• (4) 1Gb/s iSCSI ports (shown)
• (2) 10Gb/s iSCSI ports
DS3500 Controller

Optional host card provides additional connectivity

Processor with imbedded XOR/P+Q RAID parity engine

DDR2 SDRAM cache memory is mirrored, battery backed and de-staged to flash upon power loss

CACHE Battery
DS3500 Expansion

Systems can be built using same enclosure

Or intermix any combination to best meet requirements

* Up to max enclosures (16) or drives (192)
Back-end Designed For High Availability

- When attaching enclosures, drive loops are configured as redundant pairs utilizing one port from each controller. This helps ensure data access in the event of a path/loop or controller failure.

- Top-down, bottom-up cabling ensures drives stay online.
SAS Drive Technology Options

- **Solid State Drives (SSD) – 2.5-inch**
 - Deliver highest performance and lowest latency
 - Ideally suited for highest-performance environments

- **15,000 RPM – 3.5-inch and 2.5-inch**
 - Deliver highest performance in traditional form factor (rotational)
 - Great fit for transactional environments not able to afford SSDs

- **10,000 RPM – 2.5-inch**
 - Exceptional price/performance, larger capacities, lower power/cooling
 - Great fit for cost-sensitive sites looking for performance value

- **7,200 RPM near-line (NL) – 3.5-inch and 2.5-inch**
 - Deliver highest capacities and best price-per-gigabyte
 - Best choice for data-intensive or cost-sensitive environments
Drive Capacities (GB)

<table>
<thead>
<tr>
<th></th>
<th>DS3524 / EXP3524</th>
<th>DS3512 / EXP3512</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive Type</td>
<td>Drive Capacity</td>
<td>Drive Capacity</td>
</tr>
<tr>
<td>SSD</td>
<td>200/400 GB</td>
<td>---</td>
</tr>
<tr>
<td>15K SAS</td>
<td>146 GB</td>
<td>300/450/600 GB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>600 GB SED</td>
</tr>
<tr>
<td>10K SAS</td>
<td>300/600/900 GB</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>300 GB SED</td>
<td></td>
</tr>
<tr>
<td>NL-SAS</td>
<td>500/1000 GB</td>
<td>1000/2000/3000 GB</td>
</tr>
</tbody>
</table>

(24) 2.5” drives in 2U
(12) 3.5” drives in 2U

Drive Capacities (GB)

- SSD: 200/400 GB, ---
- 15K SAS: 146 GB, 300/450/600 GB, 600 GB SED
- 10K SAS: 300/600/900 GB, ---
- NL-SAS: 500/1000 GB, 1000/2000/3000 GB

11 © 2012 IBM Corporation
DS3500 Performance Comparing Base And Turbo

<table>
<thead>
<tr>
<th>Dual controller results</th>
<th>DS3500 Base Performance</th>
<th>DS3500 Turbo Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burst I/O rate cache reads</td>
<td>140,000 IOPS</td>
<td>200,000 IOPS*</td>
</tr>
<tr>
<td>Sustained I/O rate disk reads</td>
<td>30,000 IOPS</td>
<td>65,000 IOPS</td>
</tr>
<tr>
<td>Sustained I/O rate disk writes</td>
<td>7,500 IOPS</td>
<td>15,000 IOPS</td>
</tr>
<tr>
<td>Drives</td>
<td>96</td>
<td>192</td>
</tr>
<tr>
<td>Burst throughput cache read</td>
<td>2,500 MB/s</td>
<td>5,000 MB/s</td>
</tr>
<tr>
<td>Sustained throughput disk read</td>
<td>2,000 MB/s</td>
<td>4,000 MB/s</td>
</tr>
<tr>
<td>Sustained throughput disk write</td>
<td>1,100 MB/s</td>
<td>2,200 MB/s</td>
</tr>
<tr>
<td>Host ports</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

*Max cache IOPS requires SAS host card
DS3500 Performance by Host Interface (Turbo Performance)

<table>
<thead>
<tr>
<th>Dual controller results</th>
<th>6 Gb/s SAS host card* Turbo performance</th>
<th>1 Gb/s iSCSI host card Turbo performance</th>
<th>10 Gb/s iSCSI host card Turbo performance</th>
<th>8Gb FC host card Turbo performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burst I/O rate cache reads</td>
<td>200,000 IOPS</td>
<td>74,000 IOPS</td>
<td>74,000 IOPS</td>
<td>170,000 IOPS</td>
</tr>
<tr>
<td>Sustained I/O rate disk reads</td>
<td>65,000 IOPS</td>
<td>38,000 IOPS</td>
<td>38,000 IOPS</td>
<td>65,000 IOPS</td>
</tr>
<tr>
<td>Sustained I/O rate disk writes</td>
<td>15,000 IOPS</td>
<td>13,000 IOPS</td>
<td>13,000 IOPS</td>
<td>15,000 IOPS</td>
</tr>
<tr>
<td>Drives (192 15K SAS)</td>
<td>192</td>
<td>192</td>
<td>192</td>
<td>192</td>
</tr>
<tr>
<td>Sustained throughput disk read</td>
<td>4,000 MB/s</td>
<td>900 MB/s</td>
<td>4,000 MB/s</td>
<td>4,000 MB/s</td>
</tr>
<tr>
<td>Sustained throughput disk write</td>
<td>2,200 MB/s</td>
<td>900 MB/s</td>
<td>2,200 MB/s</td>
<td>2,200 MB/s</td>
</tr>
<tr>
<td>Host ports</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

* SAS host card only. Native SAS host ports were not utilized in this test.
Feature/Platform Map

<table>
<thead>
<tr>
<th>Feature</th>
<th>DS5020 / DS3950</th>
<th>DS3500 / DCS3700</th>
<th>DS5100 / DS5300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic Disk Pooling</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Thin Provisioning</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>ALUA</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>VAAI (VMware integration)</td>
<td>Future</td>
<td>✓</td>
<td>Future</td>
</tr>
<tr>
<td>Try-&-Buy Licensing</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>PREMIUM FEATURES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enhanced FlashCopy:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Increased scalability</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>• Consistency Groups</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>• Rollback (Legacy and Enhanced FC)</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>• Try & Buy available on Enhanced FC</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
24-drive pool example

- Logical Drive made up of one or more D-Chunks (different colors)
- Each D-Chunk is 4GB in a 8+2 RAID 6 (512MB pieces)
- Each D-Chunk corresponds to a single logical drive
Dynamic Disk Pools (DDP) Benefits Summary

Traditional RAID Drive Rebuilds Eliminated
- Data is automatically rebalanced across drive pool
- Addresses ever-growing drive capacities

Improved Performance
- Automated load balancing
- Maintains performance under drive failure

Simple Configuration Low Maintenance
- Automatic expansion
- No hot spares
- No RAID groups
- No dedicated parity drives

DDP delivers a lower Total Cost of Ownership
Traditional RAID Logical Drives

- Disk drives organized into Arrays (RAID groups)
- Logical Drives reside across the drives in an Array
 - Performance is dictated by number of spindles
- Hot spares sit idle until a drive fails
- Spare capacity is “stranded”

24-drive system with (2) 10-drive Arrays (8+2) and (4) hot spares
Traditional RAID – Drive Failure

- Data is recreated on hot spare
 - Single drive responsible for all writes (bottleneck)
 - Recreation happens linearly (one stripe at a time)

- All Logical Drives in that Array are significantly impacted

24-drive system with (2) 10-drive Array (8+2) and (4) hot spares
DDP Logical Drives

- Each logical drive’s data, protection information and spare capacity is distributed across all drives in disk pool
- All drives are active; none are idle
- Spare capacity is available to all Logical Drives

24-drive system with single 24-drive pool
DDP – Drive Failure

- Data is reconstructed throughout the disk pool
 - All drives share responsibility for writes
 - Operations run in parallel
 - Up to 1000X faster return to optimal condition
Additional Resources for End-users and Business Partners

- **End-users**
 - www.ibmdsstorage.com

- **IBM Business Partners**
 - www.ibmdsseries.com