IBM Power Systems – The Ultimate Platform for Compute Intensive Workloads

- 9,000+ Patents since 2001
- $4.2B Investment in POWER7 & POWER7+
- 100+ Industry leading benchmarks
- 200M Pages processed in 3 seconds by IBM Watson for healthcare delivering personalized medicine & cancer research
- 5 of 10 World’s fastest super-computers run on POWER, including Sequoia
- 88% More SAP Users per core than x86 when running on POWER7+
- 3,000+ Competitive displacements
- 20,000+ ISV apps running on IBM Power Systems
- #1 UNIX server revenue share leader 6 years running

http://www-03.ibm.com/systems/power/hardware/benchmarks/

#ibmpowersystems
IBM POWER Processor Roadmap

- **3 Year Revolution**
- **18 month “+” evolution**

First Dual Core in Industry
- Dual Core
- Chip Multi Processing
- Distributed Switch
- Shared L2
- Dynamic LPARs (32)
- 180nm

Hardware Virtualization for Unix & Linux
- Dual Core & Quad Core Md
- Enhanced Scaling
- 2 Thread SMT
- Distributed Switch +
- Core Parallelism +
- FP Performance +
- Memory bandwidth +
- 130nm, 90nm

Fastest Processor in Industry
- Dual Core
- High Frequencies
- Virtualization +
- Memory Subsystem +
- AltiVec
- Instruction Retry
- Dyn Energy Mgmt
- 2 Thread SMT +
- Protection Keys +
- 65nm

Most POWERful & Scalable Processor in Industry
- 4, 6, 8 Core
- 32MB On-Chip eDRAM
- Power Optimized Cores
- Mem Subsystem ++
- 4 Thread SMT++
- Reliability +
- VSM & VSX
- Protection Keys +
- 45nm, 32nm

IBM is the leader in Processor and Server design
10Yr History Four Quarter Average Revenue Share

UNIX Server Rolling Four Quarter Average Revenue Share
According to IDC

IBM Power Systems ships over 3X the volume of high value systems vs. HP, Oracle or other vendors

Worldwide Server Unit Share >$100K

- Industry’s most popular enterprise servers
- Sustained performance leadership
- Leadership virtualization efficiency
- Bullet proof security
- Business resiliency for mission critical applications
- Non-disruptive growth with CoD
- Cloud enabled for greater flexibility

Source: IDC Server Tracker Q212 Release, August 2012
IBM plans for future 22 nm technology are subject to change.
POWER7+
POWER7+

POWER7 45 nm

POWER7 32 nm

Add additional Cache
POWER7+

- POWER7 45 nm
- POWER7 32 nm

Add additional Cache
Add on Chip Accelerators
Benefits of eDRAM for POWER7+

With eDRAM

2.1B Transistors
567 mm²

Without eDRAM

5.4B Transistors
950 mm²

IBM’s eDRAM Benefits:
- Greater density: 1/3 the space of 6T SRAM implementation
- Less power requirements: 1/5 the standby power
- Fewer soft errors: Soft Error Rate 250x lower than SRAM
- Better Performance
POWER7+ RAS Specific Features

- **New Power On Reset Engine (PORE)**
 - Enables a processor core to be re-initialized while system remains up and running
 - Directly used to:
 - *Allow for Concurrent Firmware Updates*: In cases where a processor initialization register value needs to be changed

- **L3 Cache dynamic column repair**
 - New self-healing capability that complements cache line delete
 - Uses PORE feature to substitute a failing bit-line for a spare during run-time.

- **New Fabric Bus Dynamic Lane Repair**
 - POWER7+ has spare bit lanes that can dynamically be repaired (using PORE)
 - For Busses that connect CEC drawers
 - Avoids any repair action or outage related to a single bit failure.
POWERN7+ Processors & Architecture

Faster Performance
- Faster frequencies… up to 4.4 GHz
 POWER7+ processors
- 10 MB L3 Cache
- Random number generator
- Enhanced Single Precision Floating Point performance
- Enhanced GX system bus

Increased Efficiency and Flexibility
- Active Memory Expansion accelerator
- On-chip encryption acceleration for AIX
- Delivering 5x more performance per watt
- Enhanced energy / power gating
- 20 Virtual Machines per core

Better Availability
- Self-healing capability for L3 Cache functions
- Dynamic processor fabric bus repair
- Processor re-initialization

POWERN7+ 32 nm
Processor Designs

<table>
<thead>
<tr>
<th></th>
<th>POWER5</th>
<th>POWER5+</th>
<th>POWER6</th>
<th>POWER7</th>
<th>POWER7+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>130nm</td>
<td>90nm</td>
<td>65nm</td>
<td>45nm</td>
<td>32nm</td>
</tr>
<tr>
<td>Size</td>
<td>389 mm²</td>
<td>245 mm²</td>
<td>341 mm²</td>
<td>567 mm²</td>
<td>567 mm²</td>
</tr>
<tr>
<td>Transistors</td>
<td>276 M</td>
<td>276 M</td>
<td>790 M</td>
<td>1.2 B</td>
<td>2.1 B</td>
</tr>
<tr>
<td>Cores</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Frequencies</td>
<td>1.65 GHz</td>
<td>1.9 GHz</td>
<td>4 - 5 GHz</td>
<td>3 – 4 GHz</td>
<td>3.6 – 4.4+ GHz</td>
</tr>
<tr>
<td>L2 Cache</td>
<td>1.9MB Shared</td>
<td>1.9MB Shared</td>
<td>4MB / Core</td>
<td>256 KB per Core</td>
<td>256 KB per Core</td>
</tr>
<tr>
<td>L3 Cache</td>
<td>36MB</td>
<td>36MB</td>
<td>32MB</td>
<td>4MB / Core</td>
<td>10MB / Core</td>
</tr>
<tr>
<td>Memory Cntrl</td>
<td>1</td>
<td>1</td>
<td>2 / 1</td>
<td>2 / 1</td>
<td>2 / 1</td>
</tr>
<tr>
<td>Architecture</td>
<td>Out of Order</td>
<td>Out of Order</td>
<td>In of Order</td>
<td>Out of Order</td>
<td>Out of Order</td>
</tr>
<tr>
<td>LPAR</td>
<td>10 / Core</td>
<td>10 / Core</td>
<td>10 / Core</td>
<td>10 / Core</td>
<td>20 / Core</td>
</tr>
</tbody>
</table>
Transition from POWER6

Cores:
- 8 Intelligent Cores / chip (socket)
- 4 and 6 Intelligent Cores available on some models
- 12 execution units per core
- Out of order execution
- 4 Way SMT per core
- 32 threads per chip
- L1 – 32 KB I Cache / 32 KB D Cache per core
- L2 – 256 KB per core

Chip:
- 32MB Intelligent L3 Cache on chip

Memory:
- Dual DDR3 Controllers
- 100 GB/s sustained Memory bandwidth / chip

Scalability:
- Up to 32 Sockets
- 360 GB/s peak SMP bandwidth / chip
- 590 GB/s peak I/O bandwidth / chip
- Up to 20,000 coherent operations in flight

Energy:
- Aggressive processor Nap & Sleep modes
- 10% “Over clock” when thermals are good
POWER6 - POWER7 Compare

POWER6

- Core
- L2 Cache
- L3 Cache
- Fabric Bus Controller
- Memory Ctrl
- GX Bus Cntrl
- GX+ Bridge
- Memory+

POWER7

- Core
- L2 Cache
- L3 Cache
- Memory Interface

- Up to 8 cores / die
- 3rd Generation Multithreading – SMT4
- Integrated on-chip L3 Cache – lower latency
- 4th Generation SMP Fabric Bus
- Energy Optimized Design
Conceptual diagrams above show one of several options to result in 6-core or 4-core chips.
POWER7 / POWER7+ Module Packaging

Power 795
Single Chip Glass Ceramic

Power 775
Quad-chip MCM

Power 770 / 780
Single Chip Glass Ceramic

Power 710 / 730
Single Chip Organic

Power 720 / 740
Single Chip Organic

Power 750 / 760
Dual Chip Organic

Power 770 / 780
Single Chip Organic

POWER7

POWER7

POWER7+
POWER7+ DCM

One Socket
Two POWER7+ Chips
- 4 Core option
- 6 Core option

Results in
- 8 Core DCM
- 12-Core DCM
Processor Frequencies

- The single decimal GHz values used in announcement letters and brochures (for example 3.6) are simplified descriptions of the actual GHz provided by IBM.
- The actual frequencies are 3 digit numbers:

<table>
<thead>
<tr>
<th>Announcement Letter Values</th>
<th>Actual Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER7+</td>
<td></td>
</tr>
<tr>
<td>4-core @ 3.6 GHz</td>
<td>4 Core @ 3.612 GHz</td>
</tr>
<tr>
<td>6-core @ 4.2 GHz</td>
<td>6 Core @ 4.284 GHz</td>
</tr>
<tr>
<td>8-core @ 4.2 GHz</td>
<td>8 Core @ 4.228 GHz</td>
</tr>
<tr>
<td>POWER7+</td>
<td></td>
</tr>
<tr>
<td>8-core @ 4.3 GHz</td>
<td>8 Core @ 4.312 GHz</td>
</tr>
<tr>
<td>12-core @ 4.2 GHz</td>
<td>12 Core @ 4.284 GHz</td>
</tr>
<tr>
<td>16-core @ 3.6 GHz</td>
<td>16 Core @ 3.612 GHz</td>
</tr>
<tr>
<td>16-core @ 4.2 GHz</td>
<td>16 Core @ 4.228 GHz</td>
</tr>
</tbody>
</table>
POWER7+ Active Memory Expansion

- POWER7+ AME Hardware Accelerator
 - Enhanced Power Systems value for AIX
 - On-chip enhancement

- Compared to POWER7, more efficient memory expansion (less processor overhead for the same compression/decompression – or even more equivalent memory for the same processor overhead)

Note expansion percentage very workload dependent
Benefit of POWER7+ HW Accelerator

- **Less CPU for the same amount of memory expansion**
 - Can then run more partitions or work per partition
 - If fewer cores needed, may result in lower software licensing

- **OR more memory expansion for the same amount of processor**
 - Better able to relieve memory shortages and improve performance
 - May be able to do more work

Work done by hardware accelerator

Work done with software
Even with POWER7+ hardware accelerator there is some resource required.

POWER7+ uses on-chip hardware accelerator to do some of the compression / decompression work. There is a knee-of-cure relationship for CPU resource required for memory expansion

- Even with POWER7+ hardware accelerator there is some resource required.
- The more memory expansion done, the more CPU resource required

Knee varies depending on how compressible memory contents are
POWER7 vs Intel Poulson

<table>
<thead>
<tr>
<th></th>
<th>POWER7</th>
<th>POWER7+</th>
<th>Intel Poulson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cores</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Threads per Core</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>4.0 GHz</td>
<td>4.5 GHz</td>
<td>2.53 GHz</td>
</tr>
<tr>
<td>Chip Size</td>
<td>567mm²</td>
<td>567mm²</td>
<td>544 mm²</td>
</tr>
<tr>
<td>Technology</td>
<td>45nm SOI 11 LM EDRAM</td>
<td>32nm SOI 13 LM Edram</td>
<td>32nm 9 LM</td>
</tr>
<tr>
<td>Max Socket support</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Power</td>
<td>250 Watts</td>
<td>250 Watts</td>
<td>170 Watts</td>
</tr>
<tr>
<td>Spec_int Rate/Chip</td>
<td>340</td>
<td>390</td>
<td>180</td>
</tr>
<tr>
<td>Memory BW (70% utilization)</td>
<td>96GB/s (16 DDR3 channels)</td>
<td>96GB/s (16 DDR3 channels)</td>
<td>45 GB/s (4 DDR3 channels)</td>
</tr>
<tr>
<td>L3</td>
<td>32MB</td>
<td>80MB</td>
<td>32MB</td>
</tr>
<tr>
<td>Extras</td>
<td>Advanced Prefetch HPC Features Energy management Turbo Mode/Core</td>
<td>Need to add</td>
<td>QPI busses to IO interfaces</td>
</tr>
</tbody>
</table>

© 2013 IBM Corporation
<table>
<thead>
<tr>
<th></th>
<th>POWER7</th>
<th>Oracle T4</th>
<th>Oracle T5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cores</td>
<td>8</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Frequency</td>
<td>4.0 Ghz</td>
<td>3.0 Ghz</td>
<td>3.6 GHz</td>
</tr>
<tr>
<td>Chip Size</td>
<td>567mm2</td>
<td>403mm2</td>
<td>450 mm2 (est)</td>
</tr>
<tr>
<td>Technology</td>
<td>45nm SOI 11 LM</td>
<td>40nm TSMC 12LM</td>
<td>28nm TSMC xxLM</td>
</tr>
<tr>
<td></td>
<td>EDRAM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Socket support</td>
<td>32</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Power</td>
<td>250 Watts</td>
<td>240 Watts</td>
<td>240 Watts (est)</td>
</tr>
<tr>
<td>Spec_int Rate/Chip</td>
<td>340</td>
<td>170 (est)</td>
<td>300 (est)</td>
</tr>
<tr>
<td>Memory BW (70% utilization)</td>
<td>96GB/s (16 DDR3 channels)</td>
<td>24GB/s (4 DDR3 channels)</td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td>32MB</td>
<td>4MB</td>
<td>12MB</td>
</tr>
<tr>
<td>Extras</td>
<td>Advanced Prefetch HPC Features Energy management Turbo Mode/Core</td>
<td>16 lanes PCI 2X10 Gb Enet Encryption/Decryption</td>
<td>32 PCI lanes (est) 2X10 Gb Enet</td>
</tr>
</tbody>
</table>
Memory Channel Bandwidth Evolution

POWER5
- Memory Performance: 2x DIMM
- DDR2 @ 553 MHz
 - Effective Bandwidth: 1.1 GB/s

POWER6
- Memory Performance: 4x DIMM
- DDR2 @ 553 / 667 MHz
 - Effective Bandwidth: 2.6 GB/sec

POWER7
- Memory Performance: 6x DIMM
- DDR3 @ 1066 MHz
 - Effective Bandwidth: 6.4 GB/sec
POWER7+ technology in a mid-range system provides enterprise class availability, modular flexibility and Capacity on Demand for critical business workloads

What’s New
- POWER7+ technology brings faster frequencies and larger L3 cache sizes which helps improve performance by over 20% on most workloads
- Hardware assisted memory compression helps reduce memory requirements without penalizing performance
- Hardware assisted AIX file system encryption improves security without penalizing performance
- Improved RAS and energy efficiency features improve system attractiveness
- Increased VM’s per core improve virtualization efficiency

Features / Business Value
- Industry leading performance per system and per-core, especially OLTP/database applications
- Advanced virtualization capabilities including Micro-Partitions and the ability to move live applications from one physical system to another without user interruption which enables higher system utilization and efficiency
- Extraordinary reliability with comprehensive redundancy and system enablement for reduced unplanned downtime and elimination of planned application downtime
- Modular systems design, Utility CoD, and Hot-Node Add capabilities for easy “pay-as-you-grow” scenarios that respond quickly to change yet are easy on the bottom line
- Highly stable and reliable POWER roadmap

Client Benefits
- Easily handles virtualized consolidation of large mission critical applications and workloads
- Enables OLTP workloads to be managed in the most demanding service level agreements
- Supports highly secure environments for commercial applications
- Enables flexible, non-disruptive growth for highly available workloads
Power Systems Virtualization – Tier Consolidation & Virtualization –

ISV Pricing on Power 64 core system
DB: 38 cores
WebSphere: 1920 PVUs
Do not pay for VIO server or CUoD cores

Virtual Network WebSphere to DB works at memory speeds
Reduce impact of planned outages, relocate workloads to enable growth, provision new technology with no disruption to service.

Partition Mobility Requires:
- POWER6
- AIX 5.3 / 6.1 or Linux
- All resources must be “Virtualized”
 - No real resources
- SAN storage environment
 - SAN Boot, temp space, same network

Partition Mobility Steps
- Validation
- Copy memory pages
 - Host to target systems
- Transfer
 - Turn off Host resources
 - Activate Target resources

The number of DB licenses needed does not change before and after the migration.
Customer Shared Pool

Server 020256D3D Combined Micropartition CPU Utilization (Stacked)
POWER7+ RAS Feature Overview

<table>
<thead>
<tr>
<th>RAS Item</th>
<th>Power 750+</th>
<th>Power 760+</th>
<th>Power 770+</th>
<th>Power 780+</th>
<th>Power 795</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redundant / Hot Swap Fans & Blowers</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Hot Swap DASD / Media / PCI Adapters</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Concurrent Firmware Update</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Redundant / Hot Swap Power Supplies</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Dual disk controllers (split backplane)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Processor Instruction Retry</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Alternate Processor Recovery</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Redundant / Hot Swap Power Regulators</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>PowerVM™/Live Part. Mobility/Live App Mobility</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Dynamic Processor Sparing</td>
<td>—</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Memory Sparing</td>
<td>—</td>
<td>—</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Redundant Service Processors</td>
<td>—</td>
<td>—</td>
<td>●*</td>
<td>●*</td>
<td>●</td>
</tr>
<tr>
<td>Redundant System Clocks</td>
<td>—</td>
<td>—</td>
<td>●*</td>
<td>●*</td>
<td>●</td>
</tr>
<tr>
<td>Hot GX Adapter Add and Cold Repair</td>
<td>—</td>
<td>—</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Hot-node Add / Cold-node Repair</td>
<td>—</td>
<td>—</td>
<td>●*</td>
<td>●*</td>
<td>●</td>
</tr>
<tr>
<td>Hot-node Repair / Hot-memory Add</td>
<td>—</td>
<td>—</td>
<td>●*</td>
<td>●*</td>
<td>●</td>
</tr>
<tr>
<td>Dynamic Service Processor & System Clock Failover</td>
<td>—</td>
<td>—</td>
<td>●*</td>
<td>●*</td>
<td>●</td>
</tr>
<tr>
<td>Hot-node Repair / Hot-memory Add for all nodes”</td>
<td>—</td>
<td>—</td>
<td>●*</td>
<td>●*</td>
<td>●</td>
</tr>
<tr>
<td>Enterprise Memory</td>
<td>—</td>
<td>—</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Hot GX Adapter Repair</td>
<td>—</td>
<td>—</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Active Memory Mirroring for Hypervisor</td>
<td>—</td>
<td>—</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Power Pools</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

* Requires two or more nodes
POWER7+ continues to deliver more

Performance per Watt

- >5X increase in performance per watt over POWER6+
- >10X increase in performance per watt since POWER5+
- >10 years of changing the server landscape

<table>
<thead>
<tr>
<th>Model</th>
<th>rPerf</th>
<th>KWatts</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER4™</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p670 1.1 GHz</td>
<td></td>
<td>6.71</td>
</tr>
<tr>
<td>rPerf: 24.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POWER4+™</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p670 1.5 GHz</td>
<td></td>
<td>6.71</td>
</tr>
<tr>
<td>rPerf: 46.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POWER5™</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p5-570 1.65 GHz</td>
<td></td>
<td>5.2</td>
</tr>
<tr>
<td>rPerf: 68.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POWER5+™</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p570 1.9 GHz</td>
<td></td>
<td>5.2</td>
</tr>
<tr>
<td>rPerf: 85.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POWER6™</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power 570 4.7 GHz</td>
<td></td>
<td>5.6</td>
</tr>
<tr>
<td>rPerf: 134.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POWER6+™</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power 570 4.2 GHz</td>
<td></td>
<td>5.6</td>
</tr>
<tr>
<td>rPerf: 193.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POWER7™</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power 780 3.8 GHz</td>
<td></td>
<td>6.9</td>
</tr>
<tr>
<td>rPerf: 685.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POWER7+™</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power 780 3.7 GHz</td>
<td></td>
<td>7.7</td>
</tr>
<tr>
<td>rPerf: 1380.19</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© 2013 IBM Corporation
The most energy efficient 4-socket system on the planet

The first Energy Star certified RISC system

Power 750

Most energy efficient systems

<table>
<thead>
<tr>
<th>System</th>
<th>Performance Per Watt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Itanium HP rx6600</td>
<td></td>
</tr>
<tr>
<td>SPARC Sun T5440</td>
<td></td>
</tr>
<tr>
<td>x86 HP DL585</td>
<td></td>
</tr>
<tr>
<td>POWER7 Power 750 with PowerVM</td>
<td></td>
</tr>
</tbody>
</table>
2012 Power Systems leadership

- Performance redefined
- Scalability
- Virtualization
- Availability
- Security

IBM Watson
transforming industry innovation

Top 500
Powering 5 of the world’s top 10 supercomputers

100+ Industry Leading Benchmarks
9,000+ Patents since 2001
3,000+ Competitive migrations 1Q 2010-3Q 2012
<table>
<thead>
<tr>
<th>CPU Model</th>
<th>GHz (core/socket)</th>
<th>GHz (core)</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER7+ 710</td>
<td>3.6 GHz (4): 28,400 (4)</td>
<td>4.3 GHz (4): 59,700 (8)</td>
</tr>
<tr>
<td></td>
<td>4.2 GHz (6): 49,400 (6)</td>
<td>4.2 GHz (6): 89,200 (12),</td>
</tr>
<tr>
<td></td>
<td>4.2 GHz (8): 64,500 (8)</td>
<td>3.6 GHz (8): 104,700 (16)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2 GHz (8): 117,600 (16)</td>
</tr>
<tr>
<td>POWER7+ 720</td>
<td>3.6 GHz (4): 28,400 (4)</td>
<td>4.2 GHz (6): 49,000 (6), 91,700 (12)</td>
</tr>
<tr>
<td></td>
<td>3.6 GHz (6, 42,400 (6),</td>
<td>3.6 GHz (8): 56,300 (8), 106,500 (16)</td>
</tr>
<tr>
<td></td>
<td>3.6 GHz (8): 56,300 (8)</td>
<td>4.2 GHz (8): 64,500 (8), 120,000 (16)</td>
</tr>
<tr>
<td>POWER7+ 750</td>
<td>3.5 GHz (8): 52,000 (8), 96,000 (16), 141,500 (24), 185 (32)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.0 GHz (8): 59,000 (8), 108,000 (16), 158,000 (24), 208,000 (32)</td>
<td></td>
</tr>
<tr>
<td>POWER7+ 760</td>
<td>3.1 GHz (12): 69,800 (12), 129,000 (24), 194,700 (36), 258,000 (48)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.4 GHz (12): 75,200 (12), 137,000 (24), 209,000 (36), 274,000 (48)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>POWER7+ 710</td>
<td>POWER7+ 730</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>POWER7+ 710</td>
<td>3.6 GHz (4): 53.9 (4)</td>
<td>4.3 GHz (4): 120.4 (8),</td>
</tr>
<tr>
<td></td>
<td>4.2 GHz (6): 90.6 (6)</td>
<td>4.2 GHz (6): 176.6 (12),</td>
</tr>
<tr>
<td></td>
<td>4.2 GHz (8): 115.5 (8)</td>
<td>3.6 GHz (8): 197.7 (16)</td>
</tr>
<tr>
<td>POWER7+ 720</td>
<td>3.6 GHz (4): 53.9 (4)</td>
<td>4.2 GHz (6): 90.6 (6), 176.6 (12)</td>
</tr>
<tr>
<td></td>
<td>3.6 GHz (6): 79.5 (6),</td>
<td>3.6 GHz (8): 102.4 (8), 197.7 (16)</td>
</tr>
<tr>
<td></td>
<td>3.6 GHz (8): 102.4 (8)</td>
<td>3.6 GHz (8): 197.7 (16)</td>
</tr>
<tr>
<td>POWER7+ 750</td>
<td>3.5 GHz (8): 104.5 (8),</td>
<td>4.0 GHz (8): 117.1 (8), 220.7 (16),</td>
</tr>
<tr>
<td></td>
<td>197.0 (16), 275.9 (24),</td>
<td>3.5 GHz (8): 104.5 (8), 197.0 (16),</td>
</tr>
<tr>
<td></td>
<td>354.9 (32)</td>
<td>4.0 GHz (8): 117.1 (8), 220.7 (16),</td>
</tr>
<tr>
<td>POWER7+ 760</td>
<td>3.1 GHz (12): 142.1 (12),</td>
<td>3.4 GHz (12): 142.1 (12), 264.8 (24),</td>
</tr>
<tr>
<td></td>
<td>264.8 (24), 370.7 (36),</td>
<td>3.4 GHz (12): 142.1 (12), 264.8 (24),</td>
</tr>
<tr>
<td></td>
<td>476.7 (48)</td>
<td>3.4 GHz (12): 142.1 (12), 264.8 (24),</td>
</tr>
<tr>
<td></td>
<td>3.4 GHz (12): 151.4 (12),</td>
<td>3.4 GHz (12): 151.4 (12), 264.8 (24),</td>
</tr>
<tr>
<td></td>
<td>282.1 (24), 395.0 (36),</td>
<td>3.4 GHz (12): 151.4 (12), 264.8 (24),</td>
</tr>
<tr>
<td></td>
<td>507.8 (48)</td>
<td>3.4 GHz (12): 151.4 (12), 264.8 (24),</td>
</tr>
</tbody>
</table>
Q & A
IBM Power Systems
5 February 2013 Announcement
Hardware Deep Dive

THANKS!
Special notices

This document was developed for IBM offerings in the United States as of the date of publication. IBM may not make these offerings available in other countries, and the information is subject to change without notice. Consult your local IBM business contact for information on the IBM offerings available in your area.

Information in this document concerning non-IBM products was obtained from the suppliers of these products or other public sources. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of this document does not give you any license to these patents. Send license inquiries, in writing, to IBM Director of Licensing, IBM Corporation, New Castle Drive, Armonk, NY 10504-1785 USA.

All statements regarding IBM future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

The information contained in this document has not been submitted to any formal IBM test and is provided "AS IS" with no warranties or guarantees either expressed or implied.

All examples cited or described in this document are presented as illustrations of the manner in which some IBM products can be used and the results that may be achieved. Actual environmental costs and performance characteristics will vary depending on individual client configurations and conditions.

IBM Global Financing offerings are provided through IBM Credit Corporation in the United States and other IBM subsidiaries and divisions worldwide to qualified commercial and government clients. Rates are based on a client's credit rating, financing terms, offering type, equipment type and options, and may vary by country. Other restrictions may apply. Rates and offerings are subject to change, extension or withdrawal without notice.

IBM is not responsible for printing errors in this document that result in pricing or information inaccuracies.

All prices shown are IBM's United States suggested list prices and are subject to change without notice; reseller prices may vary.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

Any performance data contained in this document was determined in a controlled environment. Actual results may vary significantly and are dependent on many factors including system hardware configuration and software design and configuration. Some measurements quoted in this document may have been made on development-level systems. There is no guarantee these measurements will be the same on generally-available systems. Some measurements quoted in this document may have been estimated through extrapolation. Users of this document should verify the applicable data for their specific environment.

Revised September 26, 2006
IBM, the IBM logo, ibm.com AIX, AIX (logo), AIX 5L, AIX 6 (logo), AS/400, BladeCenter, Blue Gene, ClusterProven, DB2, ESCON, i5/OS, i5/OS (logo), IBM Business Partner (logo), IntelliStation, LoadLeveler, Lotus, Lotus Notes, Notes, Operating System/400, OS/400, PartnerLink, PartnerWorld, PowerPC, pSeries, Rational, RISC System/6000, RS/6000, THINK, Tivoli, Tivoli (logo), Tivoli Management Environment, WebSphere, xSeries, z/OS, zSeries, Active Memory, Balanced Warehouse, CacheFlow, Cool Blue, IBM Watson, IBM Systems Director VMCool, pureScale, TurboCore, Chipophper, Cloudscape, DB2 Universal Database, DS4000, DS6000, DS8000, EnergyScale, Enterprise Workload Manager, General Parallel File System, GPFS, HACMP, HACMP/6000, HASM, IBM Systems Director Active Energy Manager, iSeries, Micro-Partitioning, POWER, PowerLinux, PowerExecutive, PowerVM, PowerVM (logo), PowerHA, Power Architecture, Power Everywhere, Power Family, POWER Hypervisor, Power Systems, Power Systems (logo), Power Systems Software, Power Systems Software (logo), POWER2, POWER3, POWER4, POWER4+, POWER5, POWER5+, POWER6, POWER6+, POWER7, POWER7+, Systems, System i, System p, System p5, System Storage, System z, TME 10, Workload Partitions Manager and X-Architecture are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries.

A full list of U.S. trademarks owned by IBM may be found at: http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Altivec is a trademark of Freescale Semiconductor, Inc.

AMD Opteron is a trademark of Advanced Micro Devices, Inc.

InfiniBand, InfiniBand Trade Association and the InfiniBand design marks are trademarks and/or service marks of the InfiniBand Trade Association.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency which is now part of the Office of Government Commerce.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

Linear Tape-Open, LTO, the LTO Logo, Ultrium, and the Ultrium logo are trademarks of HP, IBM Corp. and Quantum in the U.S. and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries or both.

PowerLinux™ uses the registered trademark Linux® pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the Linux® mark on a worldwide basis.

Microsoft, Windows and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries or both.

NetBench is a registered trademark of Ziff Davis Media in the United States, other countries or both.

SPECint, SPECfp, SPECjbb, SPECweb, SPECjAppServer, SPEC OMP, SPECviewperf, SPECapc, SPECpc, SPECjvm, SPECmail, SPECimap and SPECsfs are trademarks of the Standard Performance Evaluation Corp (SPEC).

The Power Architecture and Power.org wordmarks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

TPC-C and TPC-H are trademarks of the Transaction Performance Processing Council (TPPC).

UNIX is a registered trademark of The Open Group in the United States, other countries or both.

Other company, product and service names may be trademarks or service marks of others.

Revised November 28, 2012
Fußnoten zum vorherigen Slide
Reference the PowerLinux 7R2 SAP SD 2-Tier Performance chart in the 710/730/7R2 section

(1) The SAP Sales and Distribution (SD) Standard Application Benchmark performed on December 9, 2012 by IBM in Austin, TX, USA, has been certified with the following data: Number of SAP SD benchmark users: 8,016, Average dialog response time: 0.98 seconds, Throughput: Fully processed order line 876,000 items/hour, Dialog steps/hour: 2,628,000, SAPS: 43,800, Average database request time 0.020 sec / 0.018 sec (dialog/update): CPU utilization of central server: 99% Operating system, central server: SUSE Linux Enterprise Server 11 SP2, RDBMS: DB2 10, SAP Business Suite software: SAP enhancement package 5 for SAP ERP 6.0, Configuration: Central server: IBM PowerLinux 7R2, 2 processors / 16 cores / 64 threads, IBM POWER7+, 4.22 GHz, 32 KB (I) and 32 KB (D) L1 cache, and 256 KB L2 cache per core, 10 MB L3 cache per core, 256 GB main memory. The SAP certification number was not available at press time and can be found at the following Web page:
www.sap.com/benchmark

(2) The SAP Sales and Distribution (SD) Standard Application Benchmark performed on December 24, 2012 by Cisco Systems in Walldorf, Germany, was certified on January 8, 2013, with the following data: Number of SAP SD benchmark users: 6,530 Average dialog response time: 0.98 seconds, Throughput: Fully processed order line items per hour: 713,670, Dialog steps per hour: 2,141,000, SAPS: 35,680 Average database request time (dialog/update): 0.015 sec / 0.036 sec, CPU utilization of central server: 99% Operating system, central server: Red Hat Enterprise Linux 6.3 RDBMS: Sybase ASE 15.7 SAP Business Suite software: SAP enhancement package 5 for SAP ERP 6.0 Configuration: Central server: Cisco UCS B200 M3, 2 processors / 16 cores / 32 threads, Intel Xeon Processor E5-2690, 2.90 GHz, 64 KB L1 cache and 256 KB L2 cache per core, 20 MB L3 cache per processor, 256 GB main memory
Notes on benchmarks and values

The IBM benchmarks results shown herein were derived using particular, well configured, development-level and generally-available computer systems. Buyers should consult other sources of information to evaluate the performance of systems they are considering buying and should consider conducting application oriented testing. For additional information about the benchmarks, values and systems tested, contact your local IBM office or IBM authorized reseller or access the Web site of the benchmark consortium or benchmark vendor.

IBM benchmark results can be found in the IBM Power Systems Performance Report at http://www.ibm.com/systems/p/hardware/system_perf.html.

All performance measurements were made with AIX or AIX 5L operating systems unless otherwise indicated to have used Linux. For new and upgraded systems, the latest versions of AIX were used. All other systems used previous versions of AIX. The SPEC CPU2006, LINPACK, and Technical Computing benchmarks were compiled using IBM's high performance C, C++, and FORTRAN compilers for AIX 5L and Linux. For new and upgraded systems, the latest versions of these compilers were used: XL C for AIX v11.1, XL C/C++ for AIX v11.1, XL FORTRAN for AIX v13.1, XL C/C++ for Linux v11.1, and XL FORTRAN for Linux v13.1.

For a definition/explanation of each benchmark and the full list of detailed results, visit the Web site of the benchmark consortium or benchmark vendor.

TPC http://www.tpc.org
SPEC http://www.spec.org
Pro/E http://www.proe.com
GPC http://www.spec.org/gpc
VolanoMark http://www.volano.com
STREAM http://www.cs.virginia.edu/stream/
SAP http://www.sap.com/benchmark/
Oracle, Siebel, PeopleSoft http://www.oracle.com/apps_benchmark/
Baan http://www.ssglobal.com
Fluent http://www.fluent.com/software/fluent/index.htm
TOP500 Supercomputers http://www.top500.org/
Ideas International http://www.ideasinternational.com/benchmark/bench.html
Storage Performance Council http://www.storag perfor mance.org/results

Revised December 2, 2010
Notes on HPC benchmarks and values

The IBM benchmarks results shown herein were derived using particular, well configured, development-level and generally-available computer systems. Buyers should consult other sources of information to evaluate the performance of systems they are considering buying and should consider conducting application oriented testing. For additional information about the benchmarks, values and systems tested, contact your local IBM office or IBM authorized reseller or access the Web site of the benchmark consortium or benchmark vendor.

IBM benchmark results can be found in the IBM Power Systems Performance Report at http://www.ibm.com/systems/p/hardware/system_perf.html.

All performance measurements were made with AIX or AIX 5L operating systems unless otherwise indicated to have used Linux. For new and upgraded systems, the latest versions of AIX were used. All other systems used previous versions of AIX. The SPEC CPU2006, LINPACK, and Technical Computing benchmarks were compiled using IBM's high performance C, C++, and FORTRAN compilers for AIX 5L and Linux. For new and upgraded systems, the latest versions of these compilers were used: XL C for AIX v11.1, XL C/C++ for AIX v11.1, XL FORTRAN for AIX v13.1, XL C/C++ for Linux v11.1, and XL FORTRAN for Linux v13.1. Linpack HPC (Highly Parallel Computing) used the current versions of the IBM Engineering and Scientific Subroutine Library (ESSSL). For Power7 systems, IBM Engineering and Scientific Subroutine Library (ESSSL) for AIX Version 5.1 and IBM Engineering and Scientific Subroutine Library (ESSSL) for Linux Version 5.1 were used.

For a definition/explanation of each benchmark and the full list of detailed results, visit the Web site of the benchmark consortium or benchmark vendor.

- SPEC: http://www.spec.org
- Pro/E: http://www.proe.com
- GPC: http://www.spec.org/gpc
- TOP500 Supercomputers: http://www.top500.org/
- AMBER: http://amber.scripps.edu/
- GAMES: http://www.msg.chem.iastate.edu/gamess
- GAUSSIAN: http://www.gaussian.com
- ANSYS: http://www.ansys.com/services/hardware-support-db.htm

Click on the "Benchmarks" icon on the left hand side frame to expand. Click on "Benchmark Results in a Table" icon for benchmark results.

- MM5: http://www.mmm.ucar.edu/mm5/
- MSC.NASTRAN: http://www.mscsoftware.com/support/prod%5Fsupport/nastran/performance/v04_snsl.cfm
- NAMD: http://www ks.uiuc.edu/Research/namd
- HMMER: http://hmmer.janelia.org/

Revised December 2, 2010

© 2013 IBM Corporation
Notes on performance estimates

rPerf for AIX

rPerf (Relative Performance) is an estimate of commercial processing performance relative to other IBM UNIX systems. It is derived from an IBM analytical model which uses characteristics from IBM internal workloads, TPC and SPEC benchmarks. The rPerf model is not intended to represent any specific public benchmark results and should not be reasonably used in that way. The model simulates some of the system operations such as CPU, cache and memory. However, the model does not simulate disk or network I/O operations.

- rPerf estimates are calculated based on systems with the latest levels of AIX and other pertinent software at the time of system announcement. Actual performance will vary based on application and configuration specifics. The IBM eServer pSeries 640 is the baseline reference system and has a value of 1.0. Although rPerf may be used to approximate relative IBM UNIX commercial processing performance, actual system performance may vary and is dependent upon many factors including system hardware configuration and software design and configuration. Note that the rPerf methodology used for the POWER6 systems is identical to that used for the POWER5 systems. Variations in incremental system performance may be observed in commercial workloads due to changes in the underlying system architecture.

All performance estimates are provided "AS IS" and no warranties or guarantees are expressed or implied by IBM. Buyers should consult other sources of information, including system benchmarks, and application sizing guides to evaluate the performance of a system they are considering buying. For additional information about rPerf, contact your local IBM office or IBM authorized reseller.

==

CPW for IBM i

Commercial Processing Workload (CPW) is a relative measure of performance of processors running the IBM i operating system. Performance in customer environments may vary. The value is based on maximum configurations. More performance information is available in the Performance Capabilities Reference at: www.ibm.com/systems/i/solutions/perfmgmt/resource.html

Revised April 2, 2007